4.8. UTILITY FUNCTION

A function which denotes the measure of satisfaction or utility an individual gets from the consumption of the commodities per unit time is known as the utility function. For example, for two commodities X_{1} and X_{2}, the utility function, $U=f\left(x_{1}, x_{2}\right)$, denotes the level of satisfaction (utility) which the individual gets on consuming the quantities x_{1} and x_{2} of the commodities X_{1} and X_{2} respectively.

The marginal utility of the commodity $X_{i},(i=1,2)$, is defined as the approximate change in the total utility resulting from one-unit change in the consumption of the commodity X_{i}, per unit time.

$$
\text { Marginal utility of } X_{i}=M U 4 x_{1}=\frac{\partial f}{\partial x_{i}} ; i=1,2
$$

The rate of change of the marginal utility of X_{i} is given by $\frac{\partial}{\partial x_{i}}\left(M U_{x_{i}}\right) ; i=1,2$.
(i) If $\frac{\partial}{\partial x_{i}}\left(M U_{x_{i}}\right)>0$, then $M U_{x_{i}}$ is an increasing function of x_{i}, i.e., the marginal utility of x_{i} increases as x_{i} increases.
(ii) If $\frac{\partial}{\partial x_{i}}\left(M U_{x_{i}}\right)<0$, then $M U_{x_{i}}$ is a decreasing function of x_{i}, i.e., $M U_{x_{i}}$ decreases as x_{i} increases.
4.8.1. Constrained Utility Maximisation. Our objective is to determine the values of x_{1} and x_{2} of the quantities consumed of the two commodities so as to maximise the total utility or satisfaction level. Hypothetically, the consumer can purchase infinite quantities of both the commodities. However, in reality this assumption has no relevance because the quantities of the commodities purchased depend on the purchasing power (income) of the consumer.

Hence our problem is to maximise the utility function :

$$
\mathrm{U}=f\left(x_{1}, x_{2}\right)
$$

for variations in x_{1} and x_{2} subject to the constraint that his purchasing power (income) is given (fixed).

If p_{1} and p_{2} are the prices per unit and, x_{1} and x_{2} are the amounts of the quantities consumed, of the commodities X_{1} and X_{2} respectively, then the budget constraint is :

$$
\begin{equation*}
Y_{\mathrm{o}}=p_{1} x_{1}+p_{2} x_{2} \quad \text { or } \quad p_{1} x_{1}+p_{2} x_{2}-y_{0}=0 \tag{4.57}
\end{equation*}
$$

where

$$
\begin{aligned}
y_{0} & =\text { Income of the amount of money to be spent on both the commodities } \\
p_{1} x_{1} & =\text { Amount of money spent on commodity } \mathrm{X}_{1} \\
p_{2} x_{2} & =\text { Amount of money spent on commodity } \mathrm{X}_{2}
\end{aligned}
$$

We want to maximise the utility function in (4.56) subject to the constraint (4.57), for variations in x_{1} and x_{2}.

Resulting (4.57), we get $\quad x_{2}=\frac{y_{0}-p_{1} x_{1}}{p_{2}}$
Substituting this value of x_{2} in (4.56), we get

$$
\begin{equation*}
U=f\left(x_{1}, \frac{y_{0}-p_{1} x_{1}}{p_{2}}\right)=\phi\left(x_{1}\right), \text { (say } \tag{4•59}
\end{equation*}
$$

where $\phi\left(x_{1}\right)$ is a function of single variable x_{1} only.
The maximum of $U=\phi\left(x_{1}\right)$, for variations in x_{1}, is the solution of the equations:
and

$$
\begin{align*}
\frac{d u}{d x_{1}} & =\frac{d}{d x_{1}}\left[\phi\left(x_{1}\right)\right]=0 \tag{4•60}\\
\frac{d^{2} u}{d x_{1}{ }^{2}} & =\frac{d^{2}}{d x_{1}{ }^{2}}\left[\phi\left(x_{1}\right)\right]<0
\end{align*}
$$

Substituting the value of x_{1} so obtained in (4.58), we get x_{2}.
Finally, substituting these values of x_{1} and x_{2} in (4.56), we get a measure of the maximum satisfaction (utility) which the consumer gets from the consumption of the commodities X_{1} and X_{2}.

Necessary Condition for Maximisation of $u=f\left(x_{1}, x_{2}\right)$ subject to Budget Constraint (4.57).

Taking total differential in (4.56), we get

$$
\begin{align*}
& d u=\frac{\partial f}{\partial x_{1}} \cdot d x_{1}+\frac{\partial f}{\partial x_{2}} \cdot d x_{2} \quad \Rightarrow \quad \frac{d u}{d x_{1}}=\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}} \cdot \frac{d x_{2}}{d x_{1}} \\
& \therefore \quad \frac{d u}{d x_{1}}=\frac{\partial f}{\partial x_{1}}-\frac{p_{1}}{p_{2}} \cdot \frac{\partial f}{\partial x_{2}}\left[\because \cdot \frac{d x_{2}}{d x_{1}}=-\frac{p_{2}}{p_{1}} \text { From (4.56) }\right] \tag{4•61}
\end{align*}
$$

For maximum of u, we have

$$
\begin{array}{lll}
\frac{d u}{d x_{1}}=0 & \Rightarrow & f_{x_{1}}-\frac{p_{1}}{p_{2}} f_{x_{2}}=0 \\
\frac{f_{x_{1}}}{f_{x_{2}}}=\frac{p_{1}}{p_{2}} & \Rightarrow & \frac{M U_{x_{1}}}{M U_{x_{2}}}=\frac{p_{1}}{p_{2}} \tag{4•62}
\end{array}
$$

i.e., for optimum utility, the ratio of the marginal utilities must equal the ratio of the prices of the commodities, or equivalently : $\frac{M U_{x_{1}}}{p_{1}}=\frac{M U_{x_{2}}}{p_{2}}$
i.e., the marginal utility divided by the price of the commodity must be same for both the commodities.

Sufficient Condition. The condition in (4.62) or (4.62 a) is only a necessary condition and not a sufficient condition for the maximum value of u. In fact, these are the conditions for an extremum (maximum or minimum) of $U=f\left(x_{1}, x_{2}\right)$. To obtain the sufficient condition for maximum of U, we have to find the second order derivative of U in (4.59). The sufficient condition for maximum of U is that

$$
\frac{d^{2} u}{d x_{1}^{2}}<0
$$

